arithmos

by Joaquín Martínez Rus

Feliz día de PI

Feliz día de PI

 

Anuncios

Número áureo

Número áureo

 

Hace unos días vi un tuit de Eduardo Saenz de Cabezón en el que relataba en una de sus genialidades nuestra existencia ese día sin saber el contenido del tuit. ¿Y que decía el tuit? “Si el triángulo es equilátero y A y B son los puntos medios de sus lados entonces AB/BC es la razón áurea, el número de oro, la divina proporción.”

phi01

trianguloPhi

visto esto es fácil demostrarlo y así lo haré en el post trigonométricamente mediante el teorema del seno y del coseno.

Sabemos que en un triángulo equilátero coincide el ortocentro corte de las tres alturas o perpendiculares desde un vértice al lado contrario, baricentro o intersección de las medianas que son las rectas que unen los vértices con los puntos medios del lado contrario, circuncentro o centro de la circunferencia circunscrita formado por las mediatrices o rectas perpendiculares al punto medio e incentro, centro de la circunferencia inscrita en él formado por la intersección de las bisectrices o rectas que dividen los ángulos en dos ángulos iguales.

Ahora recordemos el teorema del seno

1200px-Ley_de_los_senos.svg.png

y el teorema del coseno

teorema del coseno

Y ahora a calcular añadiendo a nuestro triángulo algún dato más. Trazaremos una recta entre el centro, de la circunferencia y el punto medio de un lado y otra recta que une el centro con el punto C que en realidad es el radio de la circunferencia. Para simplificar diremos que el lado del triángulo DF vale 2a y por tanto la mitad a, phi04

phi021.png

El radio es fácil determinarlo, puesto que si calculamos la hipotenusa del triángulo AOF ya que conocemos las características del triángulo equilatero,

phi05

ahora también conocemos un lado de nuestro triángulo incognita el lado OC es igual al radio. Del mismo modo que hemos calculado el radio, con el triángulo equilatero anterior, calculamos el lado OA

phi06.png

El ángulo α tiene 30º y β y γ no los conocemos, conocemos 2 lados y un ángulo; usemos el teorema del seno

phi07

Conociendo el seno, podemos conocer el coseno mediante la igualdad “la suma del cuadrado del coseno y el cuadrado del seno es la unidad”

phi08

Y toca el paso al teorema del coseno

phi11

phi10

resolviendo la ecuación de segundo grado, obtenemos dos soluciones de AC

phi12

ya podemos ver que una de las soluciones, la positiva es un múltiplo del segmento AB=a por el número áureo, de modo que la relación entre el segmento AC y AB es el número aúreo, pero lo que nos interesa era otra proporción, así que seguiremos calculándola. Conocemos AC y AB y consecuentemente BC=AC-AB, así que para las dos soluciones de la ecuación

phi13.png

y volviendo a nuestra relación inicial, si la calculamos para las dos opciones obtenidas, la primera que tiene una solución negativa y por tanto no es válida

phi15

y la segunda de la que obtenemos nuestro preciado número áureo φ

phi16

Fantástico este número oculto en nuestra naturaleza relacionando distancias, planos y espacios.

Para terminar unos videos sobre algunas figuras geométricas que lo albergan y un GIF de Alfredo Gordillo

Video11.gif

Dígitos de control II

Dígitos de control II

Continuando con el primer post, vamos a ver otros tipos de dígitos de control.

Número de la seguridad social

El número de la seguridad social consta de 2 dígitos para el código de provincia, 8 números secuenciales y dos dígitos de control. Para calcular el dígito de control, unimos los dos dígitos de la provincia y los 8 secuenciales en uno solo. Obtenemos el resto de dividir por 97. Ejemplo para un usuario de Madrid cuyo código es 28 (es el puesto 28 por orden alfabético de las provincias españolas), entonces su número ficticio es 28 12345678

2812345678 MOD 97=40⇒ el número es 28 12345678 40

ISBN (International Standar Book Number)

Este código usado por los libros, tiene 9 dígitos, país, editorial y libro y un último dígito como control. Para calcularlo, escogemos un libro que me encanta, Flatland o Planilandia con ISBN 84-7651-781-5 al que vamos a calcular el 5 final. Multiplicamos el primer dígito por 1, el segundo por 2, el tercero por 3 y así hasta el último multiplicado por 9 y sumamos todos los productos, en nuesto caso

8×1+4×2+7×3+6×4+5×5+1×6+7×7+8×8+1×9=214 y le calculamos el módulo de 11

Dígito control=214 MOD 11= 5, por tanto nuestro ISBN es 84-7651-781-5

El ISBN desde 2007, está formado en base al EAN 13 igual que los códigos de barras EAN 13, por tanto tiene otro cálculo.

(A continuación veremos una variedad de cálculo del dígito de control basada en el algoritmo de Luhn al que dedicaremos algún día un artículo para él solito)

Código de barras EAN 13

Como su nombre indica, esta formado por 13 dígitos en los que encontramos 12 dígitos de datos del pais, artículo, etc y 1 del dígito de control y para calcularlo, sumamos las cifras impares, añadimos la multiplicación por 3 de la suma de las pares y esta suma tiene que ser siempre múltiplo de 10, de modo que el dígito de control debe ser un número que sumado a este resultado sea múltiplo de 10. Ejemplo para el ISBN 9788497167048

(Hay que decir, que todos los tipos de código de barras tienen su dígito de control.)

Tarjetas de crédito

Las tarjetas de crédito tienen también estructura. Cuatro primeros dígitos a la entidad, quinto al tipo de tarjeta (VISA, Master Card, etc.), los diez siguientes corresponden a la tarjeta y el último… dígito de control. Este usa al igual que el IMEI el algoritmo de Luhn. Ejemplo tarjeta número 1234 5678 1234 567X

Multiplicamos por 2 desde la izquierda a la derecha los números impares, si el número es menor que 10, lo dejamos tal cual, si es mayor calculamos el módulo de 9 (resto de dividir por 9). Todos estos resultados los sumamos y le llamamos I.

1x2+3x2+5x2+7x2+1x2+3x2+5x2+7x2=2+6+10+14+2+6+10+14 ⇒ eliminando mayores de 10 ⇒I=2+6+1+5+2+6+1+5=28

P=2+4+6+8+2+4+6+8=40

I+P=28+40=68, calculamos el módulo de 10, R=68 MOD 10=8

DC=10-((I+P)MOD10)⇒DC=10-(68MOD10)=10-8=2

El número final de la tarjeta es por tanto 1234 5678 1234 5672

IMEI (International Mobile Equipment Identity) 

También tienen dígito de control y tiene cuatro partes, el Type Allocation Code (TAC), en donde los primeros dos dígitos indican el RBI, la organización que regula el teléfono vendido, la segunda parte es el Final Assembly Code (FAC) e indica el fabricante del equipo, la tercera parte es el número de serie del teléfono. Por último el dígito de control, usado para verificar que el IMEI es correcto. Este usa el algoritmo de Luhn al igual que las tarjetas de crédito.

Como podéis apreciar, estamos rodeados de dígitos de control, porque como decía super ratón, aún hay más.

Dígitos de control I

Dígitos de control I

Estamos rodeados de números, identificados con números, trabajamos con números y códigos, cuentas bancarias, tarjetas, DNI, seguridad social, números de teléfono, identificadores, códigos de barra, etc., aunque muchas veces no tenemos que tratar con ellos, simplemente se tratan de códigos; de hecho cuando compramos por internet, introducimos el número de tarjeta, pero cuando pagamos en un restaurante, pasamos la tarjeta y datafono se encargará de leer ese código para cobrarnos o cuando una cajera pasa un artículo por el lector y este lee el código de barras del artículo, busca en la base de datos y carga el precio en nuestra cuenta y como este mil acciones diarias, ¿pero que hemos hecho para evitar que cuando trabajamos con esos números no se cometan errores?

Pues para que no ocurran estos errores, ya se pensó a nivel binario cuando se empezaron a transmitir datos de un lado a otro yt para esto se creó el bit de paridad, de modo que en un número binario de 8 bit,s (11011110 que equivale al número 222 en decimal) al transmitirlo le incluiríamos un 1 o un 0 dependiendo si el número de unos es par o no, en este caso el número 11011110 tiene 6 unos (1) y por tanto añadiríamos un 1 al final quedando 110111101; si por casualidad se cometiera un error y se enviara 110101101 el número de unos que existen en los ocho primeros dígitos es impar, de modo que es imposible que al final haya un uno. Con esto, indicamos que existe un error y obligamos a solicitar de nuevo el byte erróneo. Contar unos, está bien, ¿pero que ocurre cuando los números se hace más grandes?, pues que debemos contar con otras herramientas matemáticas que nos permitan evitar estos errores. Visto esto, vamos a ver en que ámbitos de nuestro vida diaria existe este control.

Una de las herramientas se la debemos a Carl Friedrich Gauss y a su aritmética modular, los números congruentes. Veamos.

Un número a es congruente a b módulo de c si ambos números al dividirlos por c, obtenemos el mismo resto y lo vemos con un ejemplo.

33 es congruente con 21 módulo de 12, que se escribe 33≡21(mod12) si al dividir 33 entre 12 nos da de resto 9 y lo mismo ocurre al dividir 33 entre 12 que da de resto 9. Este tipo de aritmética es utilizada para calcular cálculos con números muy grandes, pero también la usamos para esto, para añadir dígitos de control a nuestros números cotidianos. También podemos decir que 33 MOD 12 =9 y 21 MOD12=9.

33=12×2+9 y 21=12×1+9

NIF

El NIF tiene 8 dígitos numéricos y una letra al final, pues esta letra, no es otra cosa que un dígito de control del DNI que evita que cometamos errores o acceder a una base de datos de 44 millones de registros de una forma rápida realizando 23 grupos de registros entre otras cosas. Primera pista, 23 grupos.

Si dividimos nuestro DNI (solo números claro) entre 23, obtenemos un resto lógicamente menor que 23, este resto corresponde a una sola letra del abecedario y  esa letra es la que le corresponde al NIF. Cada número desde el 0 hasta el 22 que pueden corresponder como restos, equivalen a las siguientes letras:

0⇒T, 1⇒R, 2⇒W, 3⇒A, 4⇒G, 5⇒M, 6⇒Y, 7⇒F, 8⇒P, 9⇒D, 10⇒X, 11⇒B, 12⇒N, 13⇒J, 14⇒Z, 15⇒S, 16⇒Q, 17⇒V, 18⇒H, 18⇒L, 20⇒C, 21⇒K, 22⇒E

Ejemplo.

22111333 ÷23=961362 x 23 + 7, por tanto el resto es 7 y nuestro DNI le corresponde la letra F siendo el NIF 22111333F.

Cuenta bancaria

Una cuenta bancaria tiene la siguiente estructura (porque la tiene).

  • 4 primeros dígitos indican el código de la entidad y dentro de estos cuatro, el primero o los dos segundos indican el tipo de entidad, 0 o 1 es un banco, 2 es una caja de ahorros y alguno más.
  • Los siguientes 4 dígitos indican el código de la sucursal u oficina.
  • Los dos siguiente son el dígito de control que vamos a calcular
  • Los 10 últimos dígitos identifican la cuenta bancaria

Bien, pues los dígitos de control nos van a permitir que si existiera un error en la emisión o recepción, hablada, escrita, telemática, etc. del número de cuenta, nos indique si esta es correcta. Con un ejemplo lo vemos con una cuenta ficticia 1234 5678 XY 9876543219

  1. Cogemos las 4 cifras de la entidad. Multiplicamos la primera por 4, la segunda por 8, la tercera por 5 y la cuarta por 10 y sumamos todos los productos. 1x4+2x8+3x5+4x10=75
  2. Cogemos las 4 cifras de la sucursal. Multiplicamos la primera por 9, la segunda por 7, la tercera por 3 y la cuarta por 6 y sumamos todos los productos. 5x9+6x7+7x3+8x6=156.
  3. Sumamos estas dos cantidades y obtenemos el resto de 11. 75 + 156=231. 231=21×11+0. El resto es 0.
  4. Por último multiplicamos por 1, 2, 4, 8, 5, 10, 9, 7, 3 y 6 cada una de las cifras del número de cuenta respectivamente y las sumamos. 9x1+8x2+7x4+6x8+5x5+4x10+3x9+2x7+3x1+9x6=264
  5. Obtenemos el resto de dividir por 11. 264=24×11+0
  6. El resultado final de la cuenta bancaria sería 1234 5678 00 9876543219 donde el primero y el segundo resto son el dígito de control.

Los números por los que se multiplican las cifras, no están escogidos aleatoriamente, sino que son los restos de dividir entre 11 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 y 210.

IBAN

El IBAN es un código basado en la cuenta bancaria, pero con el fin de unificar a nivel internacional las transacciones entre bancos de la Unión Europea. Para generar el IBAN se añaden 4 dígitos a la cuenta bancaria estándar de los que corresponden los dos primeros al país y los dos segundos como dígitos de control. ¿Cómo se genera?

Si somos de España, nos corresponde inicialmente ES y escribimos ES00 al final de los 20 dígitos de la cuenta bancaria; sustituimos la E por 14 y la S por 28 y nos quedaría del siguiente modo:

 1234 5678 00 9876543219 ES00⇒ 12345678009876543219142800

al número resultante, le calculamos el módulo o resto de dividir por 97

12345678009876543219142800 MOD 97 = 90

ahora restamos a 98 el resultado, 98-90=08 y este es el dígito de control quedando el IBAN como

ES08 1234 5678 00 9876543219

en el caso que el resultado sea de una sola cifra, añadimos un 0 a su izquierda.

Pues aún hay más como el número de la seguridad social, los códigos de barras, el ISBN o las tarjetas de crédito los cuales veremos en el próximo post de Arithmos.

S. M. Leonhard Euler

S. M. Leonhard Euler

A pesar de la infinitud numérica, tenemos unos cuantos números elegantes, admirables, transcendentales, solventes e insolventes, luminosos y sobresalientes como los que voy a mostraros.

Entre ellos está la unidad, lo que le da invariancia a cualquier cosa multiplicada por él incluido él mismo, lo que cualquiera esperaría para subsistir cuando es dividido, la singularidad, la simpleza, la base natural, el principio de casi todo, nuestro 1.

Otro gran número al que le costó salir del armario, el 0; su presencia es inadvertida, su multiplicación desintegra, la división por él multiplica hasta los confines del cosmos y cuando se divide a si mismo, puede pasar cualquier cosa, un número que nació de la nada.

Este número es un irracional, sin conocimiento alguno, un hecho probado por el que le asignó su identidad, su nombre, la letra que lo designará por siglos, el que aparece en la normalidad más normal, en los intereses más compuestos o en la mayoría de las fronteras, ese es e, 2.7182818284590452… el resultado de infinitas adiciones de inversiones factoriales.

Y ahora mi favorito, π, la relación de lo incor-recto, lo que aparece en el sitio menos pensado incluso donde no hay curvas, el que cuando contamos 3 para hacer algo, todavía le queda .14159265358979323846 para empezar y nunca empezaríamos, el que el ser humano empeña su esfuerzo en conocer su fin sabiendo que no lo tiene, la transcendencia conyugal perpetua con e.

Por último, un número que no es número, su complejidad no le permite compartir espacio con la naturalidad o la realidad; su imaginación es inimaginable y sus raíces están basadas en aspectos negativos, pero a pesar de esto, sus primos naturales lo ponen siempre en un buen sitio en espera que algún día pueda salvarlos de su misterio.

Pues este es el equipo que eligió S. M. Leonhard Euler para generar su obra maestra de la formulación, obra en la que cada miembro del equipo tiene su puesto, tiene su función, tiene su trabajo, acompasados y anexados por una sublime igualdad.

0b9b7-identidad2beuler

¿Habrá mayor belleza en esta igualdad? ¿Se puede ser más perfecto? ¿Pensaría algún matemático en algún momento de su vida que esto era posible?

Pues sí, ¿Quién iba a decir que la complejidad podría expresarse exponencialmente simple?

La función Phi de Euler

La función Phi de Euler
De Euler me gusta todo, su  vida entera es un monumento intelectual a nuestra civilización. Hoy voy a mostraros una de las prendas de este gran genio y es la función φ de Euler.
Lo primero que debemos saber es que son números coprimos; dos números son coprimos si su máximo común divisor es 1 es decir que no hay ningún número menor que ambos excepto el 1 por el que se puedan dividir ambos.
Pues lo primero que se dió cuenta Euler es que todo número primo tiene p-1 números corpimos con él, ¿no? Si es un número primo quiere decir que solo es divisible por si mismo o por la unidad, de modo que todos los números menores que él son corpimos con este.
Paso siguiente, cuantos coprimos tiene un número primo pk?
Pues no se le ocurre otra cosa que pensar que si un número primo tiene p-1 coprimos, tiene que haber pk-1 que no lo son, por tanto
FiEuler01
y como consecuencia, debe funcionar de igual modo para la función phi de p.
Un poco más, demostró que cumple la función multiplicativa y esto quiere decir que la φ(mn)(m)(n) por tanto un número descompuesto en factores primos, es posible conocer los números coprimos que tiene, desarrollando queda la siguiente joya matemática
PhiEuler02
y con un ejemplo práctico, el número 675 tiene 24 números coprimos menores que él.
FiEuler03
Algún día, después de miles de años, aparecerá otro genio como él para determinar
π(x) o la cantidad de números primos menores que un número, algún día.

Campana sobre campana

Campana sobre campana
Campana sobre campana es un villancico de Navidad el cual todos habremos cantado alguna vez. Y ¿por qué hablamos del villancico de las campanas?
Hablamos de la normalidad, de que estamos inmersos en campanas, de que todo es una campana sobre campana y explico por qué.
campana
Todos sabemos que es la media aritmética, o matemáticamente se trata del cociente del sumatorio de unos valores dividido entre el número de valores. Con esto nos bastaría decir por ejemplo que la media de edad en una empresa es de por ejemplo 35,4 años si sumáramos las edades de todos los componentes y la dividiéramos entre el número de estos.
Por otra parte, cuando hablamos de desviación, hablamos del promedio de desviación que existe entre la media aritmética y todos los valores. Por ejemplo si la edad mínima es de 22 años y la máxima de 55, el promedio es 37 y la desviación 14, indica que las edades son dispares, es decir hay mucha gente con poca edad y mucha gente con mucha edad, indicándonos que la media es de 37 pero que existe un promedio de desviación alto. Si la desviación fuera 1, indicaría que existe mucha gente con 37 años o muy cercana a esa edad.Bien, pues la normalidad, se trata de que cuando el número de muestras, o el número de componentes de una empresa tendiera a infinito, se formaría una campana o seguiría una distribución normal donde la media aritmética estaría representada en el centro de la campana, estando a la derecha los niveles superiores y a la izquierda los inferiores a la media. Si la desviación es grande, la campana será más achatada o platicúrtica, mientras que si la desviación es pequeña, la campana será afilada o leptocúrtica o cuando la distribución es normal, el tipo de curtósis se llama mesocúrtica. Al igual que si tiráramos una moneda al aire infinitas veces, el porcentaje de caras y cruces sería el mismo, cualquier sumatorio de variable aleatoria cuando es un suficientemente grande, sigue una distribución normal.Curtosis
¿Y para qué sirve esto?
La distribución normal además de usarse para modelos estadísticos, se usa en probabilidad y muchos más aspectos de nuestra vida cotidiana de lo que nosotros nos pensamos como la producción, transporte, marketing, economía, etc., de modo que conociendo la distribución normal de una muestra, podemos determinar la probabilidad de que se produzca un hecho en nuestra muestra o conociendo su posición en la campana, podemos conocer el número de casos que se pueden dar. Una curiosidad es que el área encerrada bajo la curva es igual a 1, por eso podemos calcular fácilmente la probabilidad, porque lo que está contenido en la curva es todo el espectro de sucesos o el 100% de casos.

Ejemplos que podríamos aplicar la probabilidad.
Una bombilla tiene un promedio de 5000 horas de vida y una desviación de 100 horas, podríamos calcular la probabilidad de que luzca más de 6000 horas o la probabilidad de que luzca menos de 4000.
Una red de ambulancias de una ciudad tiene un promedio de llegada a un centro sanitario de 30 minutos con una desviación de 5 minutos, podríamos calcular la probabilidad de que las ambulancias lleguen entre 15 y 20 minutos.
Otro ejemplo, en producción, la distribución normal es muy útil. Una empresa farmacéutica produce pastillas de 10mm de diámetro medio con una desviación de 0,5mm. Si la pastilla tiene 9,3mm o 11,5mm de diámetro se rechaza. ¿Qué probabilidad tenemos de que se produzcan pastillas en condiciones óptimas?

Mil ejemplos podría ponerse, de modo que podrían calcularse pérdidas, ganancias, optimizaciones materiales o temporales, etc. en base a la probabilidad.

Concluyendo, somos campanas sobre campanas. En nuestro desorden, todo tiene un orden. Esto se lo debemos entre otros al gran matemático Carl Friedrich Gauss, de ahí el nombre de campana de Gauss.